Agents
Introduction
Agents are PydanticAI's primary interface for interacting with LLMs.
In some use cases a single Agent will control an entire application or component, but multiple agents can also interact to embody more complex workflows.
The Agent
class is well documented, but in essence you can think of an agent as a container for:
- A system prompt — a set of instructions for the LLM written by the developer
- One or more retrievers — functions that the LLM may call to get information while generating a response
- An optional structured result type — the structured datatype the LLM must return at the end of a run
- A dependency type constraint — system prompt functions, retrievers and result validators may all use dependencies when they're run
- Agents may optionally also have a default model associated with them, the model to use can also be defined when running the agent
In typing terms, agents are generic in their dependency and result types, e.g. an agent which required Foobar
dependencies and returned data of type list[str]
results would have type Agent[Foobar, list[str]]
.
Here's a toy example of an agent that simulates a roulette wheel:
from pydantic_ai import Agent, CallContext
roulette_agent = Agent( # (1)!
'openai:gpt-4o',
deps_type=int,
result_type=bool,
system_prompt=(
'Use the `roulette_wheel` to see if the '
'customer has won based on the number they provide.'
),
)
@roulette_agent.retriever_context
async def roulette_wheel(ctx: CallContext[int], square: int) -> str: # (2)!
"""check if the square is a winner"""
return 'winner' if square == ctx.deps else 'loser'
# Run the agent
success_number = 18 # (3)!
result = roulette_agent.run_sync('Put my money on square eighteen', deps=success_number)
print(result.data) # (4)!
#> True
result = roulette_agent.run_sync('I bet five is the winner', deps=success_number)
print(result.data)
#> False
- Create an agent, which expects an integer dependency and returns a boolean result, this agent will ahve type of
Agent[int, bool]
. - Define a retriever that checks if the square is a winner, here
CallContext
is parameterized with the dependency typeint
, if you got the dependency type wrong you'd get a typing error. - In reality, you might want to use a random number here e.g.
random.randint(0, 36)
here. result.data
will be a boolean indicating if the square is a winner, Pydantic performs the result validation, it'll be typed as abool
since its type is derived from theresult_type
generic parameter of the agent.
Agents are Singletons, like FastAPI
Agents are a singleton instance, you can think of them as similar to a small FastAPI
app or an APIRouter
.
Running Agents
There are three ways to run an agent:
agent.run()
— a coroutine which returns a result containing a completed response, returns aRunResult
agent.run_sync()
— a plain function which returns a result containing a completed response (internally, this just callsasyncio.run(self.run())
), returns aRunResult
agent.run_stream()
— a coroutine which returns a result containing methods to stream a response as an async iterable, returns aStreamedRunResult
Here's a simple example demonstrating all three:
from pydantic_ai import Agent
agent = Agent('openai:gpt-4o')
result_sync = agent.run_sync('What is the capital of Italy?')
print(result_sync.data)
#> Rome
async def main():
result = await agent.run('What is the capital of France?')
print(result.data)
#> Paris
async with agent.run_stream('What is the capital of the UK?') as response:
print(await response.get_data())
#> London
You can also pass messages from previous runs to continue a conversation or provide context, as described in Messages and Chat History.
Runs vs. Conversations
An agent run might represent an entire conversation — there's no limit to how many messages can be exchanged in a single run. However, a conversation might also be composed of multiple runs, especially if you need to maintain state between separate interactions or API calls.
Here's an example of a conversation comprised of multiple runs:
from pydantic_ai import Agent
agent = Agent('openai:gpt-4o')
# First run
result1 = agent.run_sync('Who was Albert Einstein?')
print(result1.data)
#> Albert Einstein was a German-born theoretical physicist.
# Second run, passing previous messages
result2 = agent.run_sync(
'What was his most famous equation?', message_history=result1.new_messages() # (1)!
)
print(result2.data)
#> Albert Einstein's most famous equation is (E = mc^2).
message_history
the model would not know who "he" was referring to.
(This example is complete, it can be run "as is")
System Prompts
System prompts might seem simple at first glance since they're just strings (or sequences of strings that are concatenated), but crafting the right system prompt is key to getting the model to behave as you want.
Generally, system prompts fall into two categories:
- Static system prompts: These are known when writing the code and can be defined via the
system_prompt
parameter of theAgent
constructor. - Dynamic system prompts: These aren't known until runtime and should be defined via functions decorated with
@agent.system_prompt
.
You can add both to a single agent; they're concatenated in the order they're defined at runtime.
Here's an example using both types of system prompts:
from datetime import date
from pydantic_ai import Agent, CallContext
agent = Agent(
'openai:gpt-4o',
deps_type=str, # (1)!
system_prompt="Use the customer's name while replying to them.", # (2)!
)
@agent.system_prompt # (3)!
def add_the_users_name(ctx: CallContext[str]) -> str:
return f"The user's named is {ctx.deps}."
@agent.system_prompt
def add_the_date() -> str: # (4)!
return f'The date is {date.today()}.'
result = agent.run_sync('What is the date?', deps='Frank')
print(result.data)
#> Hello Frank, the date today is 2032-01-02.
- The agent expects a string dependency.
- Static system prompt defined at agent creation time.
- Dynamic system prompt defined via a decorator.
- Another dynamic system prompt, system prompts don't have to have the
CallContext
parameter.
(This example is complete, it can be run "as is")
Retrievers
Retrievers provide a mechanism for models to request extra information to help them generate a response.
They're useful when it is impractical or impossible to put all the context an agent might need into the system prompt, or when you want to make agents' behavior more deterministic by deferring some of the logic required to generate a response to another tool.
Retrievers vs. RAG
Retrievers are basically the "R" of RAG (Retrieval-Augmented Generation) — they augment what the model can do by letting it request extra information.
The main semantic difference between PydanticAI Retreivers and RAG is RAG is synonymous with vector search, while PydanticAI retrievers are more general purpose. (Note: we might add support for some vector search functionality in the future, particuarly an API for generating embeddings, see #58)
There are two different decorator functions to register retrievers:
@agent.retriever_plain
— for retrievers that don't need access to the agent context@agent.retriever_context
— for retrievers that do need access to the agent context
Here's an example using both:
import random
from pydantic_ai import Agent, CallContext
agent = Agent(
'gemini-1.5-flash', # (1)!
deps_type=str, # (2)!
system_prompt=(
"You're a dice game, you should roll the dice and see if the number "
"you got back matches the user's guess, if so tell them they're a winner. "
"Use the player's name in the response."
),
)
@agent.retriever_plain # (3)!
def roll_dice() -> str:
"""Roll a six-sided dice and return the result."""
return str(random.randint(1, 6))
@agent.retriever_context # (4)!
def get_player_name(ctx: CallContext[str]) -> str:
"""Get the player's name."""
return ctx.deps
dice_result = agent.run_sync('My guess is 4', deps='Adam') # (5)!
print(dice_result.data)
#> Congratulations Adam, you guessed correctly! You're a winner!
- This is a pretty simple task, so we can use the fast and cheap Gemini flash model.
- We pass the user's name as the dependency, to keep things simple we use just the name as a string as the dependency.
- This retriever doesn't need any context, it just returns a random number. You could probably use a dynamic system prompt in this case.
- This retriever needs the player's name, so it uses
CallContext
to access dependencies which are just the player's name. - Run the agent, passing the player's name as the dependency.
(This example is complete, it can be run "as is")
Let's print the messages from that game to see what happened:
from dice_game import dice_result
print(dice_result.all_messages())
"""
[
SystemPrompt(
content="You're a dice game, you should roll the dice and see if the number you got back matches the user's guess, if so tell them they're a winner. Use the player's name in the response.",
role='system',
),
UserPrompt(
content='My guess is 4',
timestamp=datetime.datetime(...),
role='user',
),
ModelStructuredResponse(
calls=[
ToolCall(
tool_name='roll_dice', args=ArgsObject(args_object={}), tool_id=None
)
],
timestamp=datetime.datetime(...),
role='model-structured-response',
),
ToolReturn(
tool_name='roll_dice',
content='4',
tool_id=None,
timestamp=datetime.datetime(...),
role='tool-return',
),
ModelStructuredResponse(
calls=[
ToolCall(
tool_name='get_player_name',
args=ArgsObject(args_object={}),
tool_id=None,
)
],
timestamp=datetime.datetime(...),
role='model-structured-response',
),
ToolReturn(
tool_name='get_player_name',
content='Adam',
tool_id=None,
timestamp=datetime.datetime(...),
role='tool-return',
),
ModelTextResponse(
content="Congratulations Adam, you guessed correctly! You're a winner!",
timestamp=datetime.datetime(...),
role='model-text-response',
),
]
"""
We can represent that as a flow diagram, thus:
Retrievers, tools, and schema
Under the hood, retrievers use the model's "tools" or "functions" API to let the model know what retrievers are available to call. Tools or functions are also used to define the schema(s) for structured responses, thus a model might have access to many tools, some of which call retrievers while others end the run and return a result.
Function parameters are extracted from the function signature, and all parameters except CallContext
are used to build the schema for that tool call.
Even better, PydanticAI extracts the docstring from retriever functions and (thanks to griffe) extracts parameter descriptions from the docstring and add them to the schema.
Griffe supports extracting parameter descriptions from google
, numpy
and sphinx
style docstrings, PydanticAI will infer the format to use based on the docstring. We'll add support in future to explicitly set the style to use, and warn/error if not all parameters are documented, see #59.
To demonstrate retriever schema, here we use FunctionModel
to print the schema a model would receive:
from pydantic_ai import Agent
from pydantic_ai.messages import Message, ModelAnyResponse, ModelTextResponse
from pydantic_ai.models.function import AgentInfo, FunctionModel
agent = Agent()
@agent.retriever_plain
def foobar(a: int, b: str, c: dict[str, list[float]]) -> str:
"""Get me foobar.
Args:
a: apple pie
b: banana cake
c: carrot smoothie
"""
return f'{a} {b} {c}'
def print_schema(messages: list[Message], info: AgentInfo) -> ModelAnyResponse:
retriever = info.retrievers['foobar']
print(retriever.description)
#> Get me foobar.
print(retriever.json_schema)
"""
{
'description': 'Get me foobar.',
'properties': {
'a': {'description': 'apple pie', 'title': 'A', 'type': 'integer'},
'b': {'description': 'banana cake', 'title': 'B', 'type': 'string'},
'c': {
'additionalProperties': {'items': {'type': 'number'}, 'type': 'array'},
'description': 'carrot smoothie',
'title': 'C',
'type': 'object',
},
},
'required': ['a', 'b', 'c'],
'type': 'object',
'additionalProperties': False,
}
"""
return ModelTextResponse(content='foobar')
agent.run_sync('hello', model=FunctionModel(print_schema))
(This example is complete, it can be run "as is")
The return type of retriever can any valid JSON object (JsonData
) as some models (e.g. Gemini) support semi-structured return values, some expect text (OpenAI) but seem to be just as good at extracting meaning from the data, if a Python is returned and the model expects a string, the value will be serialized to JSON
Reflection and self-correction
Validation errors from both retriever parameter validation and structured result validation can be passed back to the model with a request to retry.
You can also raise ModelRetry
from within a retriever or result validator functions to tell the model it should retry.
- The default retry count is 1 but can be altered for the entire agent, a specific retriever, or a result validator.
- You can access the current retry count from within a retriever or result validator via
ctx.retry
.
Here's an example:
from fake_database import DatabaseConn
from pydantic import BaseModel
from pydantic_ai import Agent, CallContext, ModelRetry
class ChatResult(BaseModel):
user_id: int
message: str
agent = Agent(
'openai:gpt-4o',
deps_type=DatabaseConn,
result_type=ChatResult,
)
@agent.retriever_context(retries=2)
def get_user_by_name(ctx: CallContext[DatabaseConn], name: str) -> int:
"""Get a user's ID from their full name."""
print(name)
#> John
#> John Doe
user_id = ctx.deps.users.get(name=name)
if user_id is None:
raise ModelRetry(
f'No user found with name {name!r}, remember to provide their full name'
)
return user_id
result = agent.run_sync(
'Send a message to John Doe asking for coffee next week', deps=DatabaseConn()
)
print(result.data)
"""
user_id=123 message='Hello John, would you be free for coffee sometime next week? Let me know what works for you!'
"""
Model errors
If models behave unexpectedly (e.g., the retry limit is exceeded, or their API returns 503
), agent runs will raise UnexpectedModelBehaviour
.
In these cases, agent.last_run_messages
can be used to access the messages exchanged during the run to help diagnose the issue.
from pydantic_ai import Agent, ModelRetry, UnexpectedModelBehaviour
agent = Agent('openai:gpt-4o')
@agent.retriever_plain
def calc_volume(size: int) -> int: # (1)!
if size == 42:
return size**3
else:
raise ModelRetry('Please try again.')
try:
result = agent.run_sync('Please get me the volume of a box with size 6.')
except UnexpectedModelBehaviour as e:
print('An error occurred:', e)
#> An error occurred: Retriever exceeded max retries count of 1
print('cause:', repr(e.__cause__))
#> cause: ModelRetry('Please try again.')
print('messages:', agent.last_run_messages)
"""
messages:
[
UserPrompt(
content='Please get me the volume of a box with size 6.',
timestamp=datetime.datetime(...),
role='user',
),
ModelStructuredResponse(
calls=[
ToolCall(
tool_name='calc_volume',
args=ArgsObject(args_object={'size': 6}),
tool_id=None,
)
],
timestamp=datetime.datetime(...),
role='model-structured-response',
),
RetryPrompt(
content='Please try again.',
tool_name='calc_volume',
tool_id=None,
timestamp=datetime.datetime(...),
role='retry-prompt',
),
ModelStructuredResponse(
calls=[
ToolCall(
tool_name='calc_volume',
args=ArgsObject(args_object={'size': 6}),
tool_id=None,
)
],
timestamp=datetime.datetime(...),
role='model-structured-response',
),
]
"""
else:
print(result.data)
ModelRetry
repeatedly in this case.
(This example is complete, it can be run "as is")
API Reference
Bases: Generic[AgentDeps, ResultData]
Class for defining "agents" - a way to have a specific type of "conversation" with an LLM.
Agents are generic in the dependency type they take AgentDeps
and the result data type they return, ResultData
.
By default, if neither generic parameter is customised, agents have type Agent[None, str]
.
Minimal usage example:
from pydantic_ai import Agent
agent = Agent('openai:gpt-4o')
result = agent.run_sync('What is the capital of France?')
print(result.data)
#> Paris
Source code in pydantic_ai/agent.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 |
|
__init__
__init__(
model: Model | KnownModelName | None = None,
result_type: type[ResultData] = str,
*,
system_prompt: str | Sequence[str] = (),
deps_type: type[AgentDeps] = NoneType,
retries: int = 1,
result_tool_name: str = "final_result",
result_tool_description: str | None = None,
result_retries: int | None = None,
defer_model_check: bool = False
)
Create an agent.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model | KnownModelName | None
|
The default model to use for this agent, if not provide, you must provide the model when calling the agent. |
None
|
result_type
|
type[ResultData]
|
The type of the result data, used to validate the result data, defaults to |
str
|
system_prompt
|
str | Sequence[str]
|
Static system prompts to use for this agent, you can also register system
prompts via a function with |
()
|
deps_type
|
type[AgentDeps]
|
The type used for dependency injection, this parameter exists solely to allow you to fully
parameterize the agent, and therefore get the best out of static type checking.
If you're not using deps, but want type checking to pass, you can set |
NoneType
|
retries
|
int
|
The default number of retries to allow before raising an error. |
1
|
result_tool_name
|
str
|
The name of the tool to use for the final result. |
'final_result'
|
result_tool_description
|
str | None
|
The description of the final result tool. |
None
|
result_retries
|
int | None
|
The maximum number of retries to allow for result validation, defaults to |
None
|
defer_model_check
|
bool
|
by default, if you provide a named model,
it's evaluated to create a |
False
|
Source code in pydantic_ai/agent.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
|
run
async
run(
user_prompt: str,
*,
message_history: list[Message] | None = None,
model: Model | KnownModelName | None = None,
deps: AgentDeps = None
) -> RunResult[ResultData]
Run the agent with a user prompt in async mode.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
user_prompt
|
str
|
User input to start/continue the conversation. |
required |
message_history
|
list[Message] | None
|
History of the conversation so far. |
None
|
model
|
Model | KnownModelName | None
|
Optional model to use for this run, required if |
None
|
deps
|
AgentDeps
|
Optional dependencies to use for this run. |
None
|
Returns:
Type | Description |
---|---|
RunResult[ResultData]
|
The result of the run. |
Source code in pydantic_ai/agent.py
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
|
run_sync
run_sync(
user_prompt: str,
*,
message_history: list[Message] | None = None,
model: Model | KnownModelName | None = None,
deps: AgentDeps = None
) -> RunResult[ResultData]
Run the agent with a user prompt synchronously.
This is a convenience method that wraps self.run
with asyncio.run()
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
user_prompt
|
str
|
User input to start/continue the conversation. |
required |
message_history
|
list[Message] | None
|
History of the conversation so far. |
None
|
model
|
Model | KnownModelName | None
|
Optional model to use for this run, required if |
None
|
deps
|
AgentDeps
|
Optional dependencies to use for this run. |
None
|
Returns:
Type | Description |
---|---|
RunResult[ResultData]
|
The result of the run. |
Source code in pydantic_ai/agent.py
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
|
run_stream
async
run_stream(
user_prompt: str,
*,
message_history: list[Message] | None = None,
model: Model | KnownModelName | None = None,
deps: AgentDeps = None
) -> AsyncIterator[
StreamedRunResult[AgentDeps, ResultData]
]
Run the agent with a user prompt in async mode, returning a streamed response.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
user_prompt
|
str
|
User input to start/continue the conversation. |
required |
message_history
|
list[Message] | None
|
History of the conversation so far. |
None
|
model
|
Model | KnownModelName | None
|
Optional model to use for this run, required if |
None
|
deps
|
AgentDeps
|
Optional dependencies to use for this run. |
None
|
Returns:
Type | Description |
---|---|
AsyncIterator[StreamedRunResult[AgentDeps, ResultData]]
|
The result of the run. |
Source code in pydantic_ai/agent.py
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
|
model
instance-attribute
model: Model | KnownModelName | None
The default model configured for this agent.
override_deps
Context manager to temporarily override agent dependencies, this is particularly useful when testing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
overriding_deps
|
AgentDeps
|
The dependencies to use instead of the dependencies passed to the agent run. |
required |
Source code in pydantic_ai/agent.py
298 299 300 301 302 303 304 305 306 307 308 309 310 |
|
override_model
override_model(
overriding_model: Model | KnownModelName,
) -> Iterator[None]
Context manager to temporarily override the model used by the agent.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
overriding_model
|
Model | KnownModelName
|
The model to use instead of the model passed to the agent run. |
required |
Source code in pydantic_ai/agent.py
312 313 314 315 316 317 318 319 320 321 322 323 324 |
|
last_run_messages
class-attribute
instance-attribute
The messages from the last run, useful when a run raised an exception.
Note: these are not used by the agent, e.g. in future runs, they are just stored for developers' convenience.
system_prompt
system_prompt(
func: SystemPromptFunc[AgentDeps],
) -> SystemPromptFunc[AgentDeps]
Decorator to register a system prompt function that optionally takes CallContext
as it's only argument.
Source code in pydantic_ai/agent.py
326 327 328 329 330 331 |
|
retriever_plain
retriever_plain(
func: RetrieverPlainFunc[RetrieverParams],
) -> Retriever[AgentDeps, RetrieverParams]
retriever_plain(
*, retries: int | None = None
) -> Callable[
[RetrieverPlainFunc[RetrieverParams]],
Retriever[AgentDeps, RetrieverParams],
]
retriever_plain(
func: RetrieverPlainFunc[RetrieverParams] | None = None,
/,
*,
retries: int | None = None,
) -> Any
Decorator to register a retriever function.
Source code in pydantic_ai/agent.py
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
|
retriever_context
retriever_context(
func: RetrieverContextFunc[AgentDeps, RetrieverParams]
) -> Retriever[AgentDeps, RetrieverParams]
retriever_context(
*, retries: int | None = None
) -> Callable[
[RetrieverContextFunc[AgentDeps, RetrieverParams]],
Retriever[AgentDeps, RetrieverParams],
]
retriever_context(
func: (
RetrieverContextFunc[AgentDeps, RetrieverParams]
| None
) = None,
/,
*,
retries: int | None = None,
) -> Any
Decorator to register a retriever function.
Source code in pydantic_ai/agent.py
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
|
result_validator
result_validator(
func: ResultValidatorFunc[AgentDeps, ResultData]
) -> ResultValidatorFunc[AgentDeps, ResultData]
Decorator to register a result validator function.
Source code in pydantic_ai/agent.py
333 334 335 336 337 338 |
|
ModelRetry
Bases: Exception
Exception raised when a retriever function should be retried.
The agent will return the message to the model and ask it to try calling the function/tool again.
Source code in pydantic_ai/exceptions.py
8 9 10 11 12 13 14 15 16 17 18 19 |
|
UserError
Bases: RuntimeError
Error caused by a usage mistake by the application developer — You!
Source code in pydantic_ai/exceptions.py
22 23 24 25 26 27 28 29 30 |
|
UnexpectedModelBehaviour
Bases: RuntimeError
Error caused by unexpected Model behavior, e.g. an unexpected response code.
Source code in pydantic_ai/exceptions.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
|